Modifiers are keywords that you add to those definitions to change their meanings. The Java language has a wide variety of modifiers, including the following:
To use a modifier, you include its keyword in the definition of a class, method, or variable. The modifier precedes the rest of the statement, as in the following examples (Italic ones):
public class className { // ... } private boolean myFlag; static final double weeks = 9.5; protected static final int BOXWIDTH = 42; public static void main(String[] arguments) { // body of method } |
Access Control Modifiers:
Java provides a number of access modifiers to set access levels for classes, variables, methods and constructors. The four access levels are:
- Visible to the package. the default. No modifiers are needed.
- Visible to the class only (private).
- Visible to the world (public).
- Visible to the package and all subclasses (protected).
Non Access Modifiers:
Java provides a number of non-access modifiers to achieve many other functionality.
- The static modifier for creating class methods and variables
- The final modifier for finalizing the implementations of classes, methods, and variables.
- The abstract modifier for creating abstract classes and methods.
- The synchronized and volatile modifiers, which are used for threads.
- Arithmetic Operators
- Relational Operators
- Bitwise Operators
- Logical Operators
- Assignment Operators
- Misc Operators
The Arithmetic Operators:
Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The following table lists the arithmetic operators:
Assume integer variable A holds 10 and variable B holds 20 then:
Show Examples
Operator Description Example + Addition - Adds values on either side of the operator A + B will give 30 - Subtraction - Subtracts right hand operand from left hand operand A - B will give -10 * Multiplication - Multiplies values on either side of the operator A * B will give 200 / Division - Divides left hand operand by right hand operand B / A will give 2 % Modulus - Divides left hand operand by right hand operand and returns remainder B % A will give 0 ++ Increment - Increase the value of operand by 1 B++ gives 21 -- Decrement - Decrease the value of operand by 1 B-- gives 19 The Relational Operators:
There are following relational operators supported by Java language
Assume variable A holds 10 and variable B holds 20 then:
Show Examples
Operator Description Example == Checks if the value of two operands are equal or not, if yes then condition becomes true. (A == B) is not true. != Checks if the value of two operands are equal or not, if values are not equal then condition becomes true. (A != B) is true. > Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true. (A > B) is not true. < Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true. (A < B) is true. >= Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true. (A >= B) is not true. <= Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true. (A <= B) is true. The Bitwise Operators:
Java defines several bitwise operators which can be applied to the integer types, long, int, short, char, and byte.
Bitwise operator works on bits and perform bit by bit operation. Assume if a = 60; and b = 13; Now in binary format they will be as follows:
a = 0011 1100
b = 0000 1101
-----------------
a&b = 0000 1100
a|b = 0011 1101
a^b = 0011 0001
~a = 1100 0011
The following table lists the bitwise operators:
Assume integer variable A holds 60 and variable B holds 13 then:
Show Examples
Operator Description Example & Binary AND Operator copies a bit to the result if it exists in both operands. (A & B) will give 12 which is 0000 1100 | Binary OR Operator copies a bit if it exists in eather operand. (A | B) will give 61 which is 0011 1101 ^ Binary XOR Operator copies the bit if it is set in one operand but not both. (A ^ B) will give 49 which is 0011 0001 ~ Binary Ones Complement Operator is unary and has the efect of 'flipping' bits. (~A ) will give -60 which is 1100 0011 << Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand. A << 2 will give 240 which is 1111 0000 >> Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand. A >> 2 will give 15 which is 1111 >>> Shift right zero fill operator. The left operands value is moved right by the number of bits specified by the right operand and shifted values are filled up with zeros. A >>>2 will give 15 which is 0000 1111 The Logical Operators:
The following table lists the logical operators:
Assume boolean variables A holds true and variable B holds false then:
Show Examples
Operator Description Example && Called Logical AND operator. If both the operands are non zero then then condition becomes true. (A && B) is false. || Called Logical OR Operator. If any of the two operands are non zero then then condition becomes true. (A || B) is true. ! Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true then Logical NOT operator will make false. !(A && B) is true. The Assignment Operators:
There are following assignment operators supported by Java language:
Show Examples
Operator Description Example = Simple assignment operator, Assigns values from right side operands to left side operand C = A + B will assigne value of A + B into C += Add AND assignment operator, It adds right operand to the left operand and assign the result to left operand C += A is equivalent to C = C + A -= Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operand C -= A is equivalent to C = C - A *= Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operand C *= A is equivalent to C = C * A /= Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operand C /= A is equivalent to C = C / A %= Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operand C %= A is equivalent to C = C % A <<= Left shift AND assignment operator C <<= 2 is same as C = C << 2 >>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2 &= Bitwise AND assignment operator C &= 2 is same as C = C & 2 ^= bitwise exclusive OR and assignment operator C ^= 2 is same as C = C ^ 2 |= bitwise inclusive OR and assignment operator C |= 2 is same as C = C | 2 Misc Operators
There are few other operators supported by Java Language.
Conditional Operator ( ? : ):
Conditional operator is also known as the ternary operator. This operator consists of three operands and is used to evaluate boolean expressions. The goal of the operator is to decide which value should be assigned to the variable. The operator is written as :
variable x = (expression) ? value if true : value if false
public class Test { public static void main(String args[]){ int a , b; a = 10; b = (a == 1) ? 20: 30; System.out.println( "Value of b is : " + b ); b = (a == 10) ? 20: 30; System.out.println( "Value of b is : " + b ); } }
Value of b is : 30 Value of b is : 20
instanceOf Operator:
This operator is used only for object reference variables. The operator checks whether the object is of a particular type(class type or interface type). instanceOf operator is wriiten as:
( Object reference variable ) instanceOf (class/interface type)
String name = = 'James'; boolean result = s instanceOf String; // This will return true since name is type of String
class Vehicle {} public class Car extends Vehicle { public static void main(String args[]){ Vehicle a = new Car(); boolean result = a instanceof Car; System.out.println( result); } }
true
Precedence of Java Operators:
Operator precedence determines the grouping of terms in an expression. This affects how an expression is evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has higher precedence than the addition operator:
For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher precedenace than + so it first get multiplied with 3*2 and then adds into 7.
Here operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom. Within an expression, higher precedenace operators will be evaluated first.
Category Operator Associativity Postfix () [] . (dot operator) Left to right Unary ++ - - ! ~ Right to left Multiplicative * / % Left to right Additive + - Left to right Shift >> >>> << Left to right Relational > >= < <= Left to right Equality == != Left to right Bitwise AND & Left to right Bitwise XOR ^ Left to right Bitwise OR | Left to right Logical AND && Left to right Logical OR || Left to right Conditional ?: Right to left Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left Comma , Left to right
No comments:
Post a Comment